Artificial Skin Gives Robots Sense of Touch and Beyond
06-02-22
A new artificial skin can now give robots the ability to sense temperature, pressure, and even toxic chemicals through a simple touch. The multimodal robotic-sensing platform, dubbed M-Bot, was developed in the lab of Wei Gao, Assistant Professor of Medical Engineering; Investigator, Heritage Medical Research Institute; Ronald and JoAnne Willens Scholar. It aims to give humans more precise control over robots while also protecting the humans from potential hazards. "I think we have shown a proof of concept," says Gao. "But we want to improve the stability of this robotic skin to make it last longer. By optimizing new inks and new materials, we hope this can be used for different kinds of targeted detections. We want to put it on more powerful robots and make them smarter, more intelligent." [Caltech story]
Tags:
research highlights
MedE
Wei Gao
You Yu
Jiahong Li
Samuel Solomon
Jihong Min
Changhao Xu
Jiaobing Tu
Yu Song
Chaining Atoms Together Yields Quantum Storage
02-17-22
Engineers at Caltech have developed an approach for quantum storage that could help pave the way for the development of large-scale optical quantum networks. "The ability to build a technology reproducibly and reliably is key to its success," says graduate student Andrei Ruskuc. "In the scientific context, this let us gain unprecedented insight into microscopic interactions between ytterbium qubits and the vanadium atoms in their environment." The new system relies on nuclear spins—the angular momentum of an atom's nucleus—oscillating collectively as a spin wave. This collective oscillation effectively chains up several atoms to store information. "Based on our previous work, single ytterbium ions were known to be excellent candidates for optical quantum networks, but we needed to link them with additional atoms. We demonstrate that in this work," says Andrei Faraon, Professor of Applied Physics and Electrical Engineering. [Read the paper] [Caltech story]
Tags:
APhMS
EE
research highlights
MedE
KNI
Andrei Faraon
Andrei Ruskuc
Nano-Architected Material Resists Impact Better Than Kevlar
06-25-21
Julia R. Greer, Ruben F. and Donna Mettler Professor of Materials Science, Mechanics and Medical Engineering; Fletcher Jones Foundation Director of the Kavli Nanoscience Institute, has developed a nano-architected material made from tiny carbon struts that is, pound for pound, more effective at stopping a projectile than Kevlar, a material commonly used in personal protective gear. "The knowledge from this work could provide design principles for ultra-lightweight impact resistant materials for use in efficient armor materials, protective coatings, and blast-resistant shields desirable in defense and space applications," says Greer. [Caltech story]
Tags:
APhMS
research highlights
MedE
MCE
Julia Greer
KNI