Department of Applied Physics and Materials Science - Applied Physics

News & Events

Highlights

Professor Mirhosseini Receives Okawa Foundation Research Grant

02-09-22

Mohammad Mirhosseini, Assistant Professor of Electrical Engineering and Applied Physics, has been selected as a recipient of 2021 Okawa Foundation Research Grant for developing optical interconnects for microwave quantum processors. [Research Grant Recipients]

Tags: APhMS EE honors KNI Mohammad Mirhosseini

Nano-architected Material Refracts Light Backward—An Important Step Toward One Day Creating Photonic Circuits

02-01-22

A newly created nano-architected material exhibits a property that previously was just theoretically possible: it can refract light backward, regardless of the angle at which the light strikes the material. "Negative refraction is crucial to the future of nanophotonics, which seeks to understand and manipulate the behavior of light when it interacts with materials or solid structures at the smallest possible scales," says Julia R. Greer, Ruben F. and Donna Mettler Professor of Materials Science, Mechanics and Medical Engineering; Fletcher Jones Foundation Director of the Kavli Nanoscience Institute. [Caltech story]

Tags: APhMS research highlights MedE MCE Harry Atwater Julia Greer Victoria Chernow Siying Peng Ryan Ng

New Caltech Center for Sensing to Intelligence (S2I) Launches Collaboration with Industry Partner

12-02-21

The Caltech Center for Sensing to Intelligence (S2I) has announced that, in collaboration with Rockley Photonics, a photonics-based health monitoring and communications solutions company, it will allocate $1.5 million in research grants over the next three years to jumpstart efforts to combine sensors with artificial intelligence. "We would like to have sensors in every device these days, generating a huge amount of data," says Azita Emami, Andrew and Peggy Cherng Professor of Electrical Engineering and Medical Engineering and the director of S2I. "But it's difficult to extract the most important information from the mountains of data they create." [Caltech story]

Tags: APhMS EE Changhuei Yang MedE CMS Azita Emami CNS Animashree Anandkumar Alireza Marandi Katie Bouman

Harry Atwater Elected Optica Fellow

11-08-21

Harry Atwater, Otis Booth Leadership Chair, Division of Engineering and Applied Science; Howard Hughes Professor of Applied Physics and Materials Science; Director, Liquid Sunlight Alliance, has been elected as Optica Fellow. Since 1959, over 2,800 members have joined the ranks of Fellow. These members have served with distinction in the advancement of optics and photonics through distinguished contributions to education, research, engineering, business and society. [Elected Fellows]

Tags: APhMS honors Harry Atwater

Joseph Falson Named William H. Hurt Scholar

11-05-21

A $75 million gift from the late William (Bill) H. Hurt has established a suite of endowed early-career professorships that brings young faculty together to collaborate, build connections across disciplines, and engage in research and teaching that has the potential to define new fields of study, develop technologies, and advance innovative solutions to address the greatest challenges of the day. Joseph Falson, Assistant Professor of Materials Science, is among four faculty members who make up the inaugural cohort of William H. Hurt Scholars. William H. Hurt Scholars receive unrestricted funding and gain a network of colleagues with whom they will interact through programming designed to catalyze new research ideas and collaborations. [Caltech story]

Tags: APhMS honors KNI Joseph Falson

Harry Atwater Receives Von Hippel Award

11-02-21

Harry Atwater, Otis Booth Leadership Chair, Division of Engineering and Applied Science; Howard Hughes Professor of Applied Physics and Materials Science; Director, Liquid Sunlight Alliance, received the 2021 Von Hippel Award, the Materials Research Society’s (MRS) highest honor. Atwater is being recognized “for fundamental research in light-matter interactions—particularly nanophotonics, plasmonics, photonic metamaterials, and solar energy conversion—and numerous applications of photon control of materials illustrating the value of fundamental research to technologies that improve the quality of life.” The Von Hippel Award recognizes those qualities most prized by materials scientists and engineers—brilliance and originality of intellect, combined with vision that transcends the boundaries of conventional scientific disciplines, as exemplified by the life of Arthur von Hippel. [MRS story]

Tags: APhMS honors Harry Atwater KNI

Caltech and Amazon Partner to Create New Hub of Quantum Computing

10-26-21

This past year, a new two-story building took shape in the northeast corner of the Caltech campus. Though modest in design, what takes place inside the structure could transform the future of computing. The building is the AWS Center for Quantum Computing, the result of a partnership between Caltech and Amazon Web Services, the cloud-computing branch of Amazon. The goal of the collaboration is to create quantum computers and related technologies that have the potential to revolutionize data security, machine learning, medicine development, sustainability practices, and more. "AWS will benefit from the ideas percolating here on campus," says Oskar Painter, John G. Braun Professor of Applied Physics and Physics and head of quantum hardware at AWS. Painter says quantum computing is still a very young technology, so it is crucial for development efforts to be directly connected to the latest research in academia. [Caltech story]

Tags: APhMS CMS Oskar Painter KNI Fernando Brandão

Controlling Light with a Material Three Atoms Thick

10-22-21

Scientists can control light more precisely than ever with a material only three atoms thick and constructed from so-called black phosphorous. In the lab of Harry Atwater, Otis Booth Leadership Chair, Division of Engineering and Applied Science; Howard Hughes Professor of Applied Physics and Materials Science; Director, Liquid Sunlight Alliance, three layers of phosphorous atoms were used to create a material for polarizing light that is tunable, precise, and extremely thin. Black phosphorous tech could revolutionize telecommunications by vastly improving light signals sent through fiber-optic cables. The technology could also open the door to a light-based replacement for Wi-Fi, something researchers in the field refer to as Li-Fi. "Increasingly, we're going to be looking at light-wave communications in free space," Atwater says. "Lighting like this very cool-looking lamp above my desk doesn't carry any communication signal. It just provides light. But there's no reason that you couldn't sit in a future Starbucks and have your laptop taking a light signal for its wireless communication rather than a radio signal. It's not quite here yet, but when it gets here, it will be at least a hundred times faster than Wi-Fi." [Caltech story]

Tags: APhMS research highlights Harry Atwater KNI

Material Inspired by Chain Mail Transforms from Flexible to Rigid on Command

08-12-21

Engineers at Caltech and JPL have developed a material inspired by chain mail that can transform from a foldable, fluid-like state into specific solid shapes under pressure. "We wanted to make materials that can change stiffness on command," says Chiara Daraio, G. Bradford Jones Professor of Mechanical Engineering and Applied Physics. "We'd like to create a fabric that goes from soft and foldable to rigid and load-bearing in a controllable way." To explore what materials would work best, Daraio, together with former Caltech postdoctoral researcher Yifan Wang and former Caltech graduate student Liuchi Li (PhD '19) as co-lead authors of the Nature paper, designed a number of configurations of linked particles, from linking rings to linking cubes to linking octahedrons (which resemble two pyramids connected at the base). The materials were 3-D printed out of polymers and even metals, with help from Douglas Hofmann, principal scientist at JPL, which Caltech manages for NASA. These configurations were then simulated in a computer with a model from the group of José E. Andrade, the George W. Housner Professor of Civil and Mechanical Engineering and Caltech's resident expert in the modeling of granular materials. [Caltech story]

Tags: APhMS Chiara Daraio MCE Jose Andrade KNI Yifan Wang Liuchi Li

Joseph Falson Named Moore Fellow

08-11-21

Joseph Falson, Assistant Professor of Materials Science, has been named as a 2021 Fellow in Materials Synthesis by the Gordon and Betty Moore Foundation. Falson's grant will enable him to pursue methods for growing highly pure crystals of new materials. He plans to build a custom piece of equipment with an ultra-high vacuum chamber corrosive materials that also offers access to the materials so that sensitive experiments may be conducted on them. "Broadly, the field is looking for fundamentally new types of materials that show some type of complex functionality," says Falson. [Caltech story]

Tags: APhMS honors KNI Joseph Falson